127 research outputs found

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Why are we not flooded by involuntary thoughts about the past and future? Testing the cognitive inhibition dependency hypothesis

    Get PDF
    © The Author(s) 2018In everyday life, involuntary thoughts about future plans and events occur as often as involuntary thoughts about the past. However, compared to involuntary autobiographical memories (IAMs), such episodic involuntary future thoughts (IFTs) have become a focus of study only recently. The aim of the present investigation was to examine why we are not constantly flooded by IFTs and IAMs given that they are often triggered by incidental cues while performing undemanding activities. One possibility is that activated thoughts are suppressed by the inhibitory control mechanism, and therefore depleting inhibitory control should enhance the frequency of both IFTs and IAMs. We report an experiment with a between-subjects design, in which participants in the depleted inhibition condition performed a 60-min high-conflict Stroop task before completing a laboratory vigilance task measuring the frequency of IFTs and IAMs. Participants in the intact inhibition condition performed a version of the Stroop task that did not deplete inhibitory control. To control for physical and mental fatigue resulting from performing the 60-min Stroop tasks in experimental conditions, participants in the control condition completed only the vigilance task. Contrary to predictions, the number of IFTs and IAMs reported during the vigilance task, using the probe-caught method, did not differ across conditions. However, manipulation checks showed that participants’ inhibitory resources were reduced in the depleted inhibition condition, and participants were more tired in the experimental than in the control conditions. These initial findings suggest that neither inhibitory control nor physical and mental fatigue affect the frequency of IFTs and IAMs.Peer reviewedFinal Published versio

    Large-Scale Brain Networks in Board Game Experts: Insights from a Domain-Related Task and Task-Free Resting State

    Get PDF
    Cognitive performance relies on the coordination of large-scale networks of brain regions that are not only temporally correlated during different tasks, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual differences in cognitive performance. Therefore, we aimed to examine the influence of cognitive expertise on four networks associated with cognitive task performance: the default mode network (DMN) and three other cognitive networks (central-executive network, dorsal attention network, and salience network). During fMRI scanning, fifteen grandmaster and master level Chinese chess players (GM/M) and fifteen novice players carried out a Chinese chess task and a task-free resting state. Modulations of network activity during task were assessed, as well as resting-state functional connectivity of those networks. Relative to novices, GM/Ms showed a broader task-induced deactivation of DMN in the chess problem-solving task, and intrinsic functional connectivity of DMN was increased with a connectivity pattern associated with the caudate nucleus in GM/Ms. The three other cognitive networks did not exhibit any difference in task-evoked activation or intrinsic functional connectivity between the two groups. These findings demonstrate the effect of long-term learning and practice in cognitive expertise on large-scale brain networks, suggesting the important role of DMN deactivation in expert performance and enhanced functional integration of spontaneous activity within widely distributed DMN-caudate circuitry, which might better support high-level cognitive control of behavior

    The Mouth-Gut-Brain model: An interdisciplinary approach to facilitate reformulation of reduced fat products

    Get PDF
    The food industry faces the difficult challenge of reformulating many of their products to meet increasingly stringent targets to reduce energy density by adjusting fat and sugar levels. However, reducing fat in products raises multiple risks for consumer satisfaction because of the consequent effects on both the multimodal sensory experience of the product and the extent to which satiety post‐ingestion meets expected satiety. Recognising that this complex problem requires an interdisciplinary approach, the Mouth‐Gut‐Brain project brought together academic expertise in food and sensory science, the psychology of appetite and the biophysics of food microstructure, with the support of seven industry partners, to develop novel, innovative approaches to enable successful reformulation of fat in a snack context. The project recognised the multifaceted nature of fat perception, and how it affects the psychological and physiological responses to consumption and ingestion. The outcomes of the research programme, comprising the characterisation of sensory and satiety responses of volunteers in the context of two novel fat‐reduced snack products, will be published over the next year and will help inform future novel approaches to fat reduction

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    At-risk individuals display altered brain activity following stress

    Get PDF
    Stress is a major risk factor for almost all psychiatric disorders, however, the underlying neurobiological mechanisms remain largely elusive. In healthy individuals, a successful stress response involves an adequate neuronal adaptation to a changing environment. This adaptive response may be dysfunctional in vulnerable individuals, potentially contributing to the development of psychopathology. In the current study, we investigated brain responses to emotional stimuli following stress in healthy controls and at-risk individuals. An fMRI study was conducted in healthy male controls (N = 39) and unaffected healthy male siblings of schizophrenia patients (N = 39) who are at increased risk for the development of a broad range of psychiatric disorders. Brain responses to pictures from the International Affective Picture System (IAPS) were measured 33 min after exposure to stress induced by the validated trier social stress test (TSST) or a control condition. Stress-induced levels of cortisol, alpha-amylase, and subjective stress were comparable in both groups. Yet, stress differentially affected brain responses of schizophrenia siblings versus controls. Specifically, control subjects, but not schizophrenia siblings, showed reduced brain activity in key nodes of the default mode network (PCC/precuneus and mPFC) and salience network (anterior insula) as well as the STG, MTG, MCC, vlPFC, precentral gyrus, and cerebellar vermis in response to all pictures following stress. These results indicate that even in the absence of a psychiatric disorder, at-risk individuals display abnormal functional activation following stress, which in turn may increase their vulnerability and risk for adverse outcomes
    corecore